
Eur. Phys. J. D 44, 389–400 (2007)
DOI: 10.1140/epjd/e2007-00207-5 THE EUROPEAN

PHYSICAL JOURNAL D

Thermal entanglement of two interacting qubits in a static
magnetic field

G. Lagmago Kamta1, A.Y. Istomin2,a, and A.F. Starace2,b
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Abstract. We study systematically the entanglement of a two-qubit Heisenberg XY model in thermal
equilibrium in the presence of an external arbitrarily-directed static magnetic field, thereby generalizing our
prior work [G. Lagmago Kamta, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002)]. We show that a magnetic
field having a component in the xy-plane containing the spin-spin interaction components produces different
entanglement for ferromagnetic (FM) and antiferromagnetic (AFM) couplings. In particular, quantum
phase transitions induced by the magnetic field-driven level crossings always occur for the AFM-coupled
qubits, but only occur in FM-coupled qubits when the coupling is of Ising type or when the magnetic
field has a component perpendicular to the xy-plane. When the magnetic field has a component in the
xy-plane, the cut-off temperature above which the entanglement of both the FM- and AFM-coupled qubits
vanishes can always be controlled using the magnetic field for any value of the XY coupling anisotropy
parameter. Thus, by adjusting the magnetic field, an entangled state of two spins can be produced at
any finite temperature. Finally, we find that a higher level of entanglement is achieved when the in-plane
component of the magnetic field is parallel to the direction in which the XY exchange coupling is smaller.

PACS. 03.65.Ud Entanglement and quantum nonlocality – 03.67.-a Quantum information – 03.67.Mn
Entanglement production, characterization, and manipulation – 75.10.Jm Quantized spin models

QICS. 03.40.+t Thermal/mixed state entanglement – 04.10.+s Entanglement in spin models – 04.30.+p
Entanglement in quantum phase transitions

1 Introduction

Since the inception of quantum information science,
quantum entanglement has been regarded as a physi-
cal resource for quantum information processing [1–4].
Potential applications of quantum entanglement have
stimulated research on ways to quantify and measure en-
tanglement in general [5–10], as well as on analyses of a
number of quantum systems holding promise for practical
realization of quantum information processing. Particu-
lar attention has been devoted to a variety of quantum
systems consisting of a chain of particles whose interac-
tions with each other can be modeled effectively by the
Heisenberg spin-spin exchange coupling. The Heisenberg
XYZ Hamiltonian for a chain of N spin- 1

2 particles with
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uniform nearest-neighbor interactions can be written as

H0 =
N∑

n=1

(
JxS

x
nS

x
n+1 + JyS

y
nS

y
n+1 + JzS

z
nS

z
n+1

)
, (1)

where Sαn = 1
2σ

α
n (α= x, y, z) denotes the αth component

of the local spin 1
2 operator at site n, while σαn is the corre-

sponding Pauli matrix. The periodic boundary condition,
SN+1 = S1, usually applies. The Jα are real coupling con-
stants for the spin interaction; Jα > 0 for an antiferro-
magnetic (AFM) chain and Jα < 0 for a ferromagnetic
(FM) chain.

The inter-qubit interactions in a number of systems
can be described effectively by the Hamiltonian in equa-
tion (1). For instance, the isotropic Heisenberg coupling
(Jx = Jy = Jz) [11] and the transverse XY coupling [12]
between electron spins in semiconductor quantum dots
have been proposed for use in solid-state realizations
of quantum computing, while the effective Ising-type
coupling (e.g., Jy = Jz = 0) between neutral atoms
in periodic micropotentials has been proposed to cre-
ate cluster states on which quantum information can be



390 The European Physical Journal D

imprinted, processed, and read out by sequences of one-
qubit measurements [13]. Hamiltonians similar to that in
equation (1) but involving spin operators where |S| is
a large number effectively describe dipolar and RKKY
couplings between magnetic nanodots [14,15]. Due to
these and other potential applications, considerable at-
tention has been devoted to the investigation of entangle-
ment in systems described by the general Hamiltonian in
equation (1). Indeed, general Hamiltonians that include
Heisenberg spin-spin interactions have been proposed as
“generic” [16] or “ideal” [17] model Hamiltonians for quan-
tum computation systems.

Many particular forms of the Hamiltonian in equa-
tion (1) have been studied theoretically in the litera-
ture, with the major focus being the influence of external
parameters, such as the equilibrium temperature and ex-
ternal magnetic fields, on pure- and mixed-state entangle-
ment of spin-chain systems (see, e.g., Refs. [18–30] and ref-
erences therein). The universal properties of entanglement
in n-spin ferromagnets were studied in reference [26]. The
entanglement in isotropic, two-spin Heisenberg XXX (i.e.,
Jx = Jy = Jz) and XX (i.e., Jx = Jy, Jz = 0) models has
been investigated in references [19,20], respectively. The
Heisenberg-Ising case (Jx = Jy = 0) with an arbitrary ex-
ternal magnetic field has been studied in reference [22].
The effect of an inhomogeneous magnetic field on the
entanglement in isotropic, ferromagnetic Heisenberg two-
qubit systems was studied in reference [27]. Global ther-
mal entanglement of an XXZ-type Heisenberg chain in
the presence of a uniform magnetic field was investigated
in reference [30]. Entanglement of such a chain in an
inhomogeneous magnetic field has been studied in ref-
erence [28] and the possibility of teleportation through
a thermal equilibrium state of spins in such a chain
was analyzed in reference [31]. Experimentally, the time-
dependent Heisenberg-like interaction has been realized
recently between 1H and 13C spins in a 13C-labeled chlo-
roform molecule by means of NMR pulse sequences [32],
thus evolving an initially unentangled pseudo-pure ground
state to an entangled state and then to another factorized
state via quantum phase transitions (QPTs).

Entanglement of two qubits coupled by an anisotropic
Heisenberg XY coupling, which is the main subject of
the present work, has received special attention, as the
XY coupling can be realized in a variety of systems:
(i) between electron spins in semiconductor quantum
dots [12], (ii) between electrons in a 2D-electron gas
within semiconductor-heterojunctions [33], and (iii) be-
tween neutral atoms in optical lattices [34]. Entangle-
ment swapping between three pairs of spins coupled by a
Heisenberg XY interaction has been used to create a three-
qubit Greenberger-Horne-Zeilinger-like thermal state [35].
The influence of the magnetic field and the XY coupling
anisotropy on the fidelity of quantum teleportation via
one and two pairs of coupled qubits has been investigated
in reference [36]. In the absence of an external magnetic
field, entanglement studies have been carried out for a
two-qubit anisotropic XY model (i.e., Jx �= Jy, Jz=0) in
references [20,21]. Chains involving more than two qubits

have been considered in references [23,24,37], as well as
in references [19,22]. It was shown in reference [20] that
for a two-qubit XY chain in a transverse field B = Bêz ,
a quantum phase transition occurs, and that there is a
cutoff temperature above which the concurrence vanishes,
independent of the value of the field (this is also the case
for the XXX chain investigated in Ref. [19]). For an anti-
ferromagnetic two-qubit XY model with in-plane uniform
or nonuniform magnetic fields the value of the magnetic
field at which the QPT occurs was found to be sensitive
to the field orientation [38].

In a recent study of the two qubit Heisenberg XY chain
in an external field B = Bzêz [25], we have shown that the
entanglement (i) is the same for FM and AFM chains and
(ii) is independent of the sign of the anisotropy parame-
ter γ (i.e., is invariant upon permutation of the exchange
coupling constants Jx and Jy). We have also found that
combining anisotropic spin exchange interactions with an
external field, B = Bzêz, allows one to entangle two
qubits at any finite temperature, T , by adjusting the field
strength [25].

Here we present a detailed and largely analytic anal-
ysis of the entanglement of a two-qubit system coupled
by a Heisenberg XY interaction and placed in an exter-
nal uniform magnetic field whose magnitude and direction
provide additional degrees of freedom to control the en-
tanglement. We write the Hamiltonian for our system as
follows:

H = B · (S1 + S2) + 2(JxSx1S
x
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y
1S

y
2 )
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where S±=Sx±iSy denote the spin raising and lowering
operators, and

B± = (Bx ± iBy)/2, J = (Jx + Jy)/2,
γ = (Jx − Jy)/(Jx + Jy). (3)

The parameter γ (−1 ≤ γ ≤ 1) measures the anisotropy
of the spin coupling of the system; γ = 0 for isotropic
coupling, and γ = ±1 for Heisenberg-Ising couplings. We
investigate here the most general case of entanglement of
two qubits coupled by a Heisenberg XY exchange inter-
action in the presence of an external, arbitrarily-directed
static magnetic field,

B = Bxêx +Byêy +Bzêz, (4)

where êi (i = x, y, z) are the orthogonal unit vectors.
First, we study the simplest cases, B = Bxêx and B =
Byêy, for which we obtain analytic formulae for concur-
rence for an arbitrary value of the anisotropy parameter,
γ. Second, we investigate cases when the magnetic field
components lie in the xz-plane or in the xy-plane. Finally,
we study the concurrence for a magnetic field whose di-
rection is arbitrary and is characterized by two spherical
angles.
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2 The computational approach

At thermal equilibrium at nonzero temperature, T , the
generally mixed state of a Heisenberg spin chain is de-
scribed by the density operator,

ρ = Z−1 exp(−H/kBT ), (5)

where Z = Tr[exp(−H/kBT )] is the partition function and
H is the total Hamiltonian of the system, which includes
H0 and interactions with external fields.

In the present work, we quantify the pairwise entangle-
ment of spin states in a Heisenberg chain by an established
measure, the “entanglement of formation” [5]. For a bipar-
tite pure state |Ψ〉, it is given by the von Neumann entropy
of either of its two parts, i.e., EF (Ψ) = −Tr(ρ log2 ρ),
where ρ is the partial trace of |Ψ〉〈Ψ | over either of the
two systems. For a mixture of states with probabilities
pj , described by ρ =

∑
j pj|Ψj〉〈Ψj |, the entanglement of

formation is defined as EF (ρ) = min
∑

j pjEF (Ψj). For a
2×2 system, the entanglement of formation can be written
in analytical form as [5,39,40]

EF (ρ) = h

(
1 +

√
1 − C2

2

)
, (6)

where h is the binary entropy function h(x) = −x log2 x−
(1 − x) log2(1 − x) and C is the concurrence, given by

C = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}, (7)

where the λi (i = 1, 2, 3, 4) are the eigenvalues of the op-
erator

R = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), (8)

where λ1 is the largest eigenvalue, and σy denotes the
usual Pauli matrix. Similarly to E, the concurrence C
ranges between 0 (no entanglement) and 1 (maximum en-
tanglement), and is a monotonically increasing function
of E, so that the concurrence C itself is a measure of en-
tanglement. As the density operator ρ in equation (5) de-
scribes a thermal state, its entanglement is referred to as
thermal entanglement [19]. We use the terms concurrence
and entanglement throughout this paper to refer to ther-
mal concurrence and thermal entanglement, respectively,
unless otherwise stated.

In the basis {ϕ} ≡ {|00〉, |01〉, |10〉, |11〉}, where |0〉 de-
notes spin up and |1〉 denotes spin down, the Hamiltonian
in equation (2) may be represented as

H =

⎛

⎜⎝

Bz B− B− γJ
B+ 0 J B−
B+ J 0 B−
γJ B+ B+ −Bz

⎞

⎟⎠. (9)

This Hermitian matrix is full, making it very difficult
to obtain simple analytic expressions for eigenvalues and
eigenvectors of H , for the density operator (5), as well as

for the concurrence C (7). The eigenvalues E of H are
solutions of the algebraic equation,

(E + J)
[
(B2

z + J2γ2 − E2)(J − E)

− 4B−B+E − 2Jγ(B2
− +B2

+)
]

= 0, (10)

so that only one eigenvalue, E = −J , has a simple form.
However, for special cases, such as Bz = 0, simple analytic
expressions for the eigenvalues and eigenvectors of H may
be obtained.

Obtaining analytic expressions for eigenvalues and
eigenvectors of H allows one to derive analytic expressions
for the concurrence. A direct derivation of expressions for
the λi’s in equation (7) requires an analytical evaluation
of the density matrix ρ, which is usually not trivial in the
computational basis {ϕ} ≡ {|00〉, |01〉, |10〉, |11〉}. To ob-
tain analytic expressions for the λi’s when the eigenvalues
and eigenvectors of H are available, we use the following
approach: let {ψ} = {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉} denote a set
of orthogonal eigenstates of H , where |ψj〉 (j = 1, 2, 3, 4)
denotes the eigenvector associated with the eigenvalue Ej .
The representation ρψ of ρ in this basis is diagonal and is
given by

(ρψ)jk = δj,kZ
−1 exp(−Ej/kBT ). (11)

The operator S that transforms from the representation
{ψ} to {ϕ} is unitary (i.e., SS† = S†S = I, where I is
the unit operator, and where † denotes Hermitian conju-
gation), and is given by Sjk = 〈ψj |ϕk〉. Any operator A
in the {ϕ}-representation may be expressed in terms of
its corresponding form Aψ in the {ψ}-representation by
A = S†AψS. Thus, the operator R, given by equation (8)
in the computational basis, may be rewritten as

R = S†ρψSS†(σy ⊗ σy)ψSS†ρ∗ψSS
†(σy ⊗ σy)ψS

≡ S†RψS, (12)

where Rψ ≡ ρψ(σy ⊗ σy)ψρ∗ψ(σy ⊗ σy)ψ , and where
(σy ⊗ σy)ψ is the representation of the operator (σy ⊗ σy)
in the {ψ}-basis. Since Rψ = SRS†, the eigenvalues of R
in the basis {ϕ} are identical to those of Rψ in the {ψ}-
basis. Therefore, in order to obtain the λi’s one has to find
the eigenvalues of Rψ, which is easier to evaluate analyt-
ically [41] due to the diagonal structure of ρψ, shown in
equation (11).

For cases when the eigenvalues of H cannot be ob-
tained analytically, we evaluate the concurrence numeri-
cally in the standard basis as follows: the eigenvalues Ej of
H , and the corresponding eigenvectors |ψj〉 (j = 1, 2, 3, 4),
are calculated using standard diagonalization routines.
Then the eigenvectors are used to compute the trans-
formation matrices S and S†, and to derive the density
matrix ρ = S†ρψS from the density matrix ρψ given by
equation (11).
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3 Case of an external field B = Bxêx

The solution of the eigenvalue problem for the Hamilto-
nian matrix (9) for B = Bxêx yields

E1 = −γJ, E2 = −J, E3,4 = [(1 + γ)J ± ηx]/2, (13)

and the corresponding eigenvectors are

|ψ1〉 = |Φ−〉, |ψ2〉 = |Ψ−〉,
|ψ3,4〉 = N3,4

[
Bx|Φ+〉 + (E3,4 − γJ)|Ψ+〉] , (14)

where ηx =
√

(1 − γ)2J2 + 4B2
x. The normalization con-

stants are given by N3,4 =
√

2/[ηx(ηx ± J(1 − γ))]. Pa-
rameters having the index “3” take the “+” sign, while
those having the index “4” take the “−” sign. |Φ±〉 and
|Ψ±〉 denote the four maximally entangled Bell states:

|Φ±〉 =
1√
2

(|00〉 ± |11〉) , |Ψ±〉 =
1√
2

(|01〉 ± |10〉).
(15)

Since the eigenvectors in equation (14) are real, so is the
transformation matrix S,

S=
1√
2

⎛

⎜⎝

1 0 0 −1
0 1 −1 0

BxN3 N3(E3−γJ) N3(E3−γJ) BxN3

BxN4 N4(E4−γJ) N4(E4−γJ) BxN4

⎞

⎟⎠.

(16)
Therefore, Rψ = ρψ(σy ⊗ σy)ψρψ(σy ⊗ σy)ψ . As described
in Section 2 we evaluate the concurrence (i.e., the λi’s) by
finding the eigenvalues of Rψ in the eigenstate basis {ψ},
in which the operator (σy ⊗ σy) is given by

(σy ⊗ σy)ψ =

⎛

⎜⎝

1 0 0 0
0 −1 0 0
0 0 J(1−γ)/ηx −2Bx/ηx
0 0 −2Bx/ηx −J(1−γ)/ηx

⎞

⎟⎠. (17)

After lengthy calculations, one finds that the λi’s are
given by

λ1 = Z−2 exp(2γJ/kBT ), (18)

λ2 = Z−2 exp (2J/kBT ), (19)

λ3,4 =
e−J(1+γ)/kBT

Z2

{
Fγ,J(Bx, T )±

√
Fγ,J(Bx, T )2 − 1

}
,

(20)
where

Fγ,J(Bx, T ) =
[
4B2

x

η2
x

+
(1 − γ)2J2

η2
x

cosh
(

ηx
kBT

)]
,

Z = exp
(

J

kBT

)
+ exp

(
− (1 + γ)J + ηx

2kBT

)

+ exp
(
γJ

kBT

)
+ exp

(
− (1 + γ)J − ηx

2kBT

)
, (21)

and where in λ3 and λ4 (cf. Eq. (20)), “+” and “−” signs
respectively are assumed.

The λi’s in equations (18–20) cannot be ordered un-
less one assigns specific values to the parameters involved.

This prevents one from writing a more specific analytic
formula for the concurrence other than equation (7) with
the λi’s given by equations (18–20). In practice, we first
evaluate the λi’s, then order them by magnitude, with λ1

being the largest, and then use equation (7) to derive the
concurrence.

Interesting properties of the concurrence can readily
be derived from equations (18–20): (i) for the anisotropy
parameter γ = 1 (i.e., Jy = 0), the entanglement vanishes
for both FM and AFM chains. In fact, the two terms in the
corresponding Hamiltonian H = Bx(Sx1 +Sx2 )+2JxSx1Sx2 ,
both tend to impose spin order along the x-axis; (ii) for
arbitrary γ the concurrences for the FM and AFM chains
are different, because the set of λi’s is not invariant un-
der the transformation J → −J . However, for the specific
case γ = −1 (i.e., Jx = 0), the transformation J → −J
leaves the set of λi’s unchanged, thereby indicating that
for γ = −1, the entanglement of the two qubits is the same
for FM and AFM chains. This is the case of two qubits
with Ising interaction in the presence of an orthogonal ex-
ternal magnetic field, which was studied in reference [22];
(iii) the set of λi’s is not invariant under the transforma-
tion γ → −γ, which corresponds to the permutation of Jx
and Jy, thereby indicating that the concurrence changes
with the sign of the anisotropy parameter. Note that this
contrasts with the B = Bzêz case [25], where the con-
currence is the same for FM and AFM chains, and is un-
changed by a change in the sign of the anisotropy param-
eter; (iv) finally, and similarly to the B = Bzêz case in
reference [25], the λi’s in equations (18–20) are invariant
under the transformation Bx → −Bx, which means that
the concurrence does not depend on the orientation of
the B field along the x-axis, but only on its magnitude.
As mentioned above, the case γ = 1 is trivial, and the
case γ = −1 has been studied [22]; therefore our discus-
sion below will be restricted to values of γ in the range
−1 < γ < 1.

Consider first the isotropic Heisenberg chain, for which
γ = 0. The concurrence obtained for this case is plotted
with respect to kBT and |Bx| in Figure 1b for the AFM
chain with J = 1, and in Figure 1c for the FM chain
with J = −1. For comparison, we show similar results for
the isotropic Heisenberg chain in Figure 1a for B = Bz êz
with |J | = 1 [20,25]. In this case FM and AFM chains
have the same concurrence, which vanishes identically for
a temperature larger that the cutoff value Tc given by
kBTc ≡ 1.1346J [20].

In general, the plots in Figure 1 indicate that the con-
currence is maximal at T = 0, that it decreases with
increasing temperature (owing to the increasing mixture
of the ground state with other states), and that there is
a cutoff temperature above which the concurrence van-
ishes. However, one sees that for the case B = Bxex,
the cutoff temperature Tc above which the concurrence
vanishes depends on the magnitude of the B field. Fig-
ure 2 shows this cutoff temperature as a function of the
magnitude |Bj | (j = x, z), for external magnetic fields
B = Bjej . For B = Bzez, the cutoff temperature is con-
stant for both FM and AFM couplings. For B = Bxex
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Fig. 1. (Color online) Comparison of the concurrences for the
isotropic XY chain of two qubits as a function of kBT and the
magnitude of the magnetic field B for two different directions
of B. (a) FM and AFM chains (|J | = 1) for B = Bzez; (b)
AFM chain (J = 1) for B = Bxex; (c) FM chain (J = −1) for
B = Bxex.

for the case of FM coupling, Tc increases monotonically
with |Bx|. In contrast, the behavior of Tc for the AFM
coupled qubits in a B = Bxex magnetic field displays two
regions: a region corresponding to small values of |Bx| up
to approximately

√
2J , where Tc decreases with |Bx|, and

a region corresponding to values of |Bx| larger than
√

2J ,
over which Tc increases monotonically with Bx. (The ori-
gin of the quantity ≈√2J is discussed later.) This means
that for an isotropic XY chain of two qubits, by having
an external magnetic field along the x-direction (i.e., in
the plane of the spin coupling) instead of the z-direction
(i.e., perpendicular to the plane of the spin coupling), one
can induce entanglement between otherwise unentangled
qubits at any temperature, by increasing the magnitude
of the magnetic field B = Bxex. (As we have recently
shown [25], generating spin entanglement in a two-qubit
Heisenberg chain with an external field B = Bzêz at any
temperature is possible only for anisotropic exchange cou-
pling.) Note that for the AFM case with B = Bxex, for
0.3 � kBT � 1.2 there is a range of magnetic field values
beginning in the vicinity of Bx ≈ 2 over which the con-
currence is zero, but is nonzero for both lower and higher
magnetic field values. In other words, the increase of the
magnetic field in this case induces a revival of the concur-
rence.

Fig. 2. Cutoff temperature Tc at which the concurrence C for
an isotropic XY chain of two qubits vanishes, plotted versus
the magnitude of the magnetic field |Bj | (j = x, z): (i) FM and
AFM chains with B = Bzez (horizontal dot-dashed line); (ii)
AFM chain with B = Bxex (solid curve); (iii) FM chain with
B = Bxex (dashed curve). In all cases, |J | = 1.

Results for B = Bxex and for various values of the
anisotropy parameter are shown in Figure 3 for the FM
case (J = −1) and in Figure 4 for the AFM case (J = 1).
These plots also show a maximum concurrence at T = 0,
which decreases with increasing temperature and which
vanishes when a cutoff temperature is reached. This cutoff
temperature increases with the field strength, so that for
any finite temperature one can always generate entangle-
ment by increasing the field strength. One sees that in gen-
eral, for a given value of |Bx|, the cutoff temperature in-
creases with decreasing anisotropy parameter γ (i.e., with
increasing Jy). This means that one obtains higher cutoff
temperatures by increasing the spin exchange coupling in
the direction perpendicular to the B field. One can show
that for asymptotically large |Bx|, i.e., for |Bx| 
 J and
|Bx| 
 γ, the cutoff temperature Tc above which the con-
currence vanishes is given by

kBTc =
|Bx|

ln
(

4|Bx|
|J||1−γ| − 2

) , (22)

which clearly illustrates the increase of the cutoff temper-
ature with decreasing anisotropy parameter γ.

The concurrence for the FM chain in Figure 1c varies
continuously as a function of the magnetic field. This is
not the case for the AFM chain in Figure 1b at T = 0,
where the concurrence first equals unity as Bx increases
from zero, then drops sharply and discontinuously when
Bx reaches a critical value Bcx. This nonanalytic behavior
of the concurrence is due to the occurrence of a quantum
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Fig. 3. (Color online) Concurrence of two qubits coupled by
XY ferromagnetic coupling (J = −1) as a function of kBT and
the magnitude of the magnetic field B = Bxex for six values
of the anisotropy parameter γ, as indicated in each figure.

Fig. 4. (Color online) Same as Figure 3, but for the case of
antiferromagnetic coupling (J = 1).

phase transition (QPT) [42]. Similarly, plots of the con-
currence for various values of the anisotropy parameter in
Figures 3 and 4 indicate that a non-analyticity occurs at
T = 0 for an AFM chain (see Fig. 4), but never occurs
for the FM chain (see Fig. 3). In fact, taking the limit of
the λi’s in equations (18–20) for T → 0, one finds that at
T = 0, the concurrence is given by

CT=0 = (1 − γ)
|J |
ηx
, (23)

for the FM chain, and by

CT=0 =

⎧
⎪⎨

⎪⎩

1 for |Bx| <
√

2(1 + γ)J,
1 − (1 − γ)J/ηx

2
for |Bx| =

√
2(1 + γ)J,

(1 − γ)J/ηx for |Bx| >
√

2(1 + γ)J
(24)

for the AFM chain. Note that equations (23) and (24) hold
for −1 < γ < 1. As mentioned above, the concurrence is
identical for FM and AFM chains when γ = −1; in that
case, the concurrence at T = 0 is given by equation (24).
Therefore, the concurrence for the AFM chain at T =
0, in contrast to the FM chain, becomes a non analytic
function of |Bx| when |Bx| reaches the critical value Bcx ≡√

2(1 + γ)J [or, equivalently, when η reaches the critical
value ηcx = (3 + γ)J ].

This QPT originates from a level-crossing, i.e., when
an excited state energy becomes equal and then drops be-
low a ground state energy, as the system parameter is var-
ied [42]. This may occur for the AFM chain, but not for
the FM chain, as illustrated in Figure 5 for γ = 0.5. For
a FM chain (J < 0), the state |ψ4〉 has the lowest energy
E4 = −|J | for |Bx| = 0. Increasing |Bx| only lowers E4

and further increases the gap between E4 and the energy
of the lowest excited state, so that |ψ4〉 always remains
the ground state of the FM two-qubit system. In contrast,
for a two-qubit AFM system, the state |ψ2〉 has its low-
est energy E2 = −J for |Bx| = 0. As |Bx| increases, E4

decreases and becomes equal to E4 = −J = E2 when Bx
reaches the critical magnetic field Bcx. As |Bx| increases
beyond Bcx, a level crossing occurs as |ψ4〉 becomes the
ground state of the AFM chain.

It follows that at T = 0, the FM system is always
in its ground state |ψ4〉, and computing the concurrence
for this pure state leads to equation (23). The level cross-
ing induced by the external magnetic field in the AFM
chain is the source of the non-analyticity of the concur-
rence. Indeed, for |Bx| < |Bcx|, the system is in the pure
state |ψ2〉 whose entanglement is 1. For |Bx| = Bcx, |ψ2〉
and |ψ4〉 have the same (lowest) energy, the ground state
is therefore an equal mixture of these two states, whose
entanglement is given by the second equation in equa-
tion (24). To show this, one can use the density operator
ρ = 1

2 |ψ2〉〈ψ2| + 1
2 |ψ4〉〈ψ4|, which describes this mixture.

Finally, for |Bx| > Bcx, the AFM chain at T = 0 is in the
pure state |ψ4〉, whose entanglement is given by the last
equation in equation (24).

4 Case of an external field B = Byey

The isotropic Heisenberg XY chain has rotational sym-
metry about the z-axis. The concurrence is therefore the
same for all orientations of the external magnetic field per-
pendicular to the z-axis. In other words, for the isotropic
Heisenberg chain, the entanglement of the two qubits in
the presence of an external magnetic field B = Byey is
the same as for the case B = Bxex investigated in the
previous section.
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Fig. 5. Energy levels of the FM (top plot) and of the AFM
(bottom plot) XY chains of the two qubits, vs the magni-
tude |Bx| of the external magnetic field B = Bxex. Energies
and |Bx| are given in units of J . Results shown are obtained
with γ = 0.5. Ej denotes the energy of the eigenstate Ψj ,
j = 1, 2, 3, 4. A level crossing occurs at the critical magnetic
field for the AFM chain but not for the FM chain.

For the anisotropic Heisenberg XY chain (i.e., γ �= 0),
the rotational symmetry about the z-axis is broken, so
that the cases B = Bxex and B = Byey would lead to
different concurrences. However, the Hamiltonians (2) for
these two cases can be derived from one another by a per-
mutation of the x and y-axes. Therefore, the concurrence
for B = Byey can be deduced from the concurrence for
B = Bxex using the transformations Bx → By, Jx → Jy,
and γ → −γ. Explicitly, this means that the λi’s leading to
the concurrence for B = Byey are given by equations (18–
21), with Bx replaced by By and γ by −γ. Therefore,
the plots shown in Figures 1–5 are also valid for the case
B = Byey, provided that Bx is replaced by By and the
corresponding γ by −γ. For example, all plots in Figure 3
(Fig. 4) represent the concurrence for the FM XY chain
(AFM XY chain) in an external field B = Byey, with
plots labelled (a), (b), (c), (d), (e) and (f) corresponding

to γ = 0.9, γ = 0.5, γ = 0.1, γ = −0.9, γ = −0.5 and
γ = −0.1, respectively.

The concurrence at T = 0 for B = Byey is also given
by equations (23) for the FM chain and by equation (24)
for the AFM chain, with Bx replaced by By and γ replaced
by −γ. It follows that in the presence of an external mag-
netic field B = Byey a quantum phase transition occurs
for the AFM chain but not for the FM chain, and that the
cutoff temperature above which the concurrence vanishes
increases with By, so that one can entangle the two spins
at any temperature by adjusting the magnetic field. Also,
one sees that for given |By| one obtains larger cutoff tem-
peratures by increasing the anisotropy parameter γ, i.e.,
by increasing the exchange coupling Jx in the direction
perpendicular to the B field.

5 Case of an external field B = Bxex + Byey

With this configuration of the external magnetic field, the
eigenvalues and eigenvectors of the Hamiltonian in equa-
tion (9) have complicated analytic forms (cf. Sect. 7),
thereby preventing us from obtaining analytical expres-
sions for the λi’s using the eigenstate basis approach. We
rather use the numerical approach to evaluate the con-
currence for this case. Figure 6 displays the concurrence
with respect to the x- and y-components of the B field, for
various anisotropy parameters at T = 0. We present only
results for γ ≥ 0 because the transformation γ → −γ fol-
lowed by a permutation of the x- and y-axes leaves the sys-
tem unchanged, i.e., C(γ,Bx, By) = C(−γ,By, Bx). Thus,
from each plot in Figure 6 for a given γ, the correspond-
ing plot for the anisotropy parameter −γ is deduced by
making a permutation of Bx and By. One sees that the
concurrence is invariant under any of the transformations
Bx → −Bx and By → −By.

Figures 6a and 6e show the concurrence for the
isotropic chain (γ = 0), and illustrate the symmetry of
the concurrence with respect to the axis through the
origin and perpendicular to the (Bx, By) plane. This
consequence of the rotational symmetry of the isotropic
Heisenberg XY chain about the z-axis suggests that there
is no privileged direction for entanglement. In fact, due
to this symmetry, the present orientation of the mag-
netic field for γ = 0 leads to the same concurrence as
for the cases B = Bxex discussed in detail in Section 3.
In other words, for the B = Bxex + Byey case with
isotropic exchange interaction, the λi’s are given by equa-
tions (18–20), and the concurrence at T = 0 is given by
equations (23) and (24), in which Bx (resp. ηx) is replaced
by Bxy ≡

√
B2
x +B2

y (resp. ηxy =
√
J2 + 4B2

xy), with
γ = 0. Therefore, at T = 0, no quantum phase transition
occurs for the FM chain, and C = J/ηxy. This is confirmed
by the numerical results in Figure 6a, which show a contin-
uous decrease of the concurrence with increasing Bxy. On
the other hand, for the isotropic chain at T = 0, a quan-
tum phase transition occurs for the AFM chain when Bxy
reaches the critical value

√
2J , i.e., when B2

x +B2
y = 2J2,

which describes a circle of radius
√

2J , centered at the
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Fig. 6. (Color online) Concurrence of two qubits coupled by
Heisenberg FM and AFM interactions for |J | = 1.0 at zero tem-
perature, T = 0, in the presence of an external in-plane mag-
netic field, B = Bxex + Byey for four values of the anisotropy
parameter γ: 0, 0.3, 0.7, and 1.0. Note that for γ = 1.0 in (d)
and (h), one has C ≡ 0 along the line By = 0.

origin in the (Bx, By) plane. This is confirmed by the
numerical results in Figure 6e, which show that the con-
currence is equal to unity for Bx and By within a circular
disk of radius

√
2J centered at the origin; when Bx and

By increase so that they are both located on the circle of
radius

√
2J (i.e., at the rim of the disk of radius

√
2J),

the concurrence decreases sharply to 1/3; finally, for Bx
and By outside the disk of radius

√
2J , the concurrence

decreases analytically as C = J/ηxy. Figure 6a for the
FM chain shows that the concurrence is maximal (C=1)
for B = 0, and decreases analytically with increasing Bxy
as C = J/ηxy.

The anisotropic cases with γ > 0 (i.e. Jx > Jy) shown
in Figure 6 illustrate the breakdown of the rotational sym-
metry about the z-axis. With increasing γ, the concur-
rence for the FM chain stretches along the y-axis, so that
the maximum entanglement is achieved for a B field di-
rected along the y-axis. For the AFM chains, the circular
disk in the (Bx, By) plane, which corresponds to the max-
imum entanglement for γ = 0, becomes elliptical, with the
major axis along the x-direction and the minor axis along
the y-direction. With increasing anisotropy, the major axis
of the ellipse increases, while the minor axis decreases. For
the AFM chain, having a B field increasingly aligned along
the y-axis also maximizes the concurrence, which is less

Fig. 7. (Color online) The cutoff temperature above which the
concurrence vanishes for B = Bxex +Byey as a function of Bx

and By for various asymmetry parameters γ.

stretched along the y-axis than for the FM chain. From the
property C(γ,Bx, By) = C(−γ,By, Bx) mentioned above,
it appears that for γ < 0 (i.e. Jy > Jx), the maximum en-
tanglement is obtained for a B field increasingly aligned
along the x-axis. Therefore, one may conclude that in gen-
eral, maximum entanglement is achieved with an external
B field aligned in the direction parallel to the axis in which
the exchange coupling is smaller. It follows from our re-
sults for γ = 1 in Section 3 that for B = Bxex, the con-
currence vanishes identically. Therefore, in Figures 6d and
6h the concurrence is zero along the line By = 0.

With increasing temperature, the concurrence de-
creases as a result of a mixture of the ground state with ex-
cited states, and there is always a cutoff temperature, Tc,
above which the concurrence vanishes. This cutoff temper-
ature is plotted in Figure 7 as a function of Bx and By for
various values of the anisotropy parameter γ. For the FM
case (Figs. 7a–7c), Tc increases monotonically with both
Bx and By, thereby indicating that increasing the field
strength generates entanglement between otherwise unen-
tangled spins. This is true independently of the anisotropy
parameter. Note that the influence of the y-component By
of the magnetic field in increasing Tc is much stronger than
that of the x-component, Bx. For the AFM case however
(see Figs. 7d–7f), Tc is approximately constant for small
values of Bx and By located in a domain corresponding
to a circular (γ = 0) or elliptical (γ �= 0) disk centered
at the origin in the (Bx, By)-plane. When the magnitudes
of Bx and By correspond to the rim of the disk-shaped
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Fig. 8. (Color online) Concurrence of a two-qubit XY chain in
an external magnetic field B = Bxex + Bzez at temperature
T = 0. Results are shown for ferromagnetic (FM) and antifer-
romagnetic (AFM) two-qubit chains for |J | = 1.0 and values
of the anisotropy parameter γ indicated in each figure.

domains, Tc drops sharply and then increases monotoni-
cally with both Bx and By. The size of this disk-shaped
domain decreases with increasing anisotropy parameter.
This sharp drop in Tc occurs for Bx and By in the vicin-
ity of the values at which the QPT occurs at T = 0 in the
AFM case. Therefore, the non-analyticity of Tc is also a
consequence of the QPT, resulting in a Tc that is larger
for the FM chain than for the AFM chain.

6 Case of an external field B = Bxex + Bzez

Many features of the concurrence for this case, such as
its invariance under the transformations Bx → −Bx and
Bz → −Bz, can be deduced from the B = Bxex case dis-
cussed above and from the study of the B = Bzez case in
reference [25]. Figure 8 shows the concurrence versus Bx
and Bz for both FM and AFM chains, and for various val-
ues of the anisotropy parameter γ. One sees that for both
the FM and AFM cases there is a non-analytic behavior of
the concurrence. For the FM case, a non-analyticity occurs
only for Bx = 0 when |B| = |Bx| = J

√
1 − γ2, in agree-

ment with the finding of reference [21] for B = Bez . As
expected from our results in Section 3, the x-component
of the magnetic field does not induce a QPT in the case
of the FM chain, but rather produces a smooth variation
of the concurrence as a function of Bx. The QPT in the
FM chain occurs solely because of the z-component of the
B-field. It appears that the influence of an x-component
Bx in suppressing the QPT outweighs the tendency of the
z-component Bz in inducing a QPT.

For the AFM cases in Figure 8 there are QPTs for all
values of the anisotropy and there is always a region of Bx

and Bz in which the concurrence has the maximum value
of unity and then drops sharply when critical values of Bx
and Bz are reached. Note that here both components of
the B-field lead to QPTs.

7 Case of an arbitrarily directed magnetic
field

For the case of an arbitrarily directed magnetic field, the
eigenenergies are obtained by solving the algebraic equa-
tion (10), which can be rewritten as follows:

(E + J)[E3 − JE2 − (B2
z + γ2J2 + 4B+B−)E

+ J(B2
z + γ2J2) − 2γJ(B2

+ +B2
−)] = 0. (25)

The analytic solutions to this equation have the following
form:

E1 =
1
3

(a
2

+ 2
b

a
+ J

)
, E2 = −J,

E3,4 =
1
3

[a
4
(−1 ±√

3) +
b

a
(−1 ∓ i

√
3) + J

]
, (26)

where

a =
(
8J3 + 36Jc− 108d+ 12

√
3

×
√

27d2 − 4J3d− 4c3 − J2c2 − 18Jcd
)1/3

,

b = J2 + 3c, c = B2 + γ2J2,

d = J(B2
z + γ2J2) − γJ(B2

x −B2
y). (27)

Despite the appearance of complex quantities in the equa-
tions above (e.g., in Eq. (26)), the energies Ei (i =
1, 2, 3, 4) are real. For the case when the magnetic field
is directed along the z-axis, expressions for Ei can be re-
duced easily to the results of reference [25]: E1,2 = ∓J and
E3,4 = ±√B2

z + γ2J2. The analytic expressions for the
energy eigenstates, |ψi〉 = αi|00〉+ βi|01〉+ γi|10〉+ δi|11〉
(i = 1, 2, 3, 4), follow immediately from the system of lin-
ear equations defined by the Hamiltonian matrix in equa-
tion (9); however, they have rather lengthy expressions
and are thus not shown.

In what follows, the direction of the magnetic field,
having the magnitude B, is characterized by the spheri-
cal angles θ and ϕ in a coordinate frame whose x- and
y-axes span the XY Heisenberg coupling plane and are
directed along the Sx and Sy coupling components, and
whose z-axis is orthogonal to the XY coupling plane. In
Figures 9–11 we plot and discuss our results as functions
of θ and φ.

In Figure 9 we show the concurrence of the system at
zero temperature (i.e., in its ground state), as a function
of the direction of the magnetic field having a fixed mag-
nitude, for both the ferromagnetic and antiferromagnetic
couplings. Only cases having nonnegative γ are shown
(i.e., Jx ≥ Jy), while the corresponding plots for negative
values can be obtained by rotating the coordinate frame
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Fig. 9. (Color online) Same as Figure 6, but for an arbitrarily-
directed magnetic field, having the magnitude B = 1.0 and
direction characterized by spherical angles θ and φ.

in which the magnetic field components are measured by
π/2 about the z-axis (i.e., by making the following substi-
tutions in Figure 9: for 0 < ϕ < 3π/2, ϕ → ϕ + π/2, and
for 3π/2 < ϕ < 2π, ϕ→ ϕ− 3π/2).

In the case of FM coupling (cf. Figs. 9a–9d), the con-
currence is a continuous function of θ and ϕ. For FM Ising
coupling (cf. Fig. 9a) the concurrence is largest when ei-
ther θ = 0, π or when ϕ = π/2, 3π/2 (i.e., when B is
parallel to the z- or y-axis, respectively), and is zero for
(θ = π/2, ϕ = 0) and for (θ = π/2, ϕ = π) (i.e., for B par-
allel to the x-axis, which for γ = 1 is the Ising interaction
axis). For intermediate values of the anisotropy parame-
ter (cf. Figs. 9b, 9c), the concurrence is largest when the
magnetic field is directed along the axis corresponding to
the smaller value of the Heisenberg interaction compo-
nent. In the limit of an isotropic interaction (cf. Fig. 9d),
the concurrence exhibits little dependence on θ, and is in-
dependent of ϕ due to the cylindrical symmetry of the
system.

In the case of AFM coupling (cf. Figs. 9e–9h), the con-
currence exhibits discontinuities as a function of θ and
ϕ, which are due to quantum phase transitions driven
by energy level crossings. For the AFM Ising coupling

Fig. 10. (Color online) Same as Figure 9, but for nonzero
temperature, kBT = 0.25.

(cf. Fig. 9e), as for the FM Ising coupling, the concur-
rence is zero for (θ = π/2, ϕ = 0) and (θ = π/2, ϕ = π),
but any infinitisimal deviation from these values results
in a quantum phase transition and a jump in the value of
the concurrence to unity. Considering results discussed for
various B fields in previous sections, it appears that the
occurrence of QPTs for the FM case with γ �= 1 is due to
the nonzero component of B along the z-axis. For interme-
diate values of γ, there are two circle-shaped regions in the
(θ, φ) plane for which the concurrence is maximal (unity).
The radius of these regions increases as γ decreases, and
in the limit of isotropic coupling (cf. Fig. 9h) the ground
state concurrence equals unity for any direction of the
magnetic field.

In Figure 10, we present the concurrence of the sys-
tem’s mixed state at nonzero temperature, kBT = 0.25J ;
other parameters are the same as in Figure 9. One sees
that for the FM coupling, the effect of nonzero tempera-
ture on the concurrence is a general decrease of its magni-
tude. For the AFM coupling, however, there are qualita-
tive differences in the concurrence behavior as compared
to Figure 9. The level crossing-induced quantum phase
transitions, which are still present in the results shown in
Figures 9e–h, do not result in discontinuities of the con-
currence. The discontinuity features present at T = 0 (in
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Fig. 11. (Color online) Cut-off temperature, kBTc, for FM
and AFM couplings for |J | = 1.0 as a function of spherical
angles characterizing the direction of an external magnetic field
having a magnitude B = 2.0.

Figs. 9e–9h) are no longer present for T > 0 (in Figs. 10e–
10h).

Finally, in Figure 11 we show the numerically calcu-
lated cut-off temperature, kBTc, at which the concurrence
vanishes, as a function of the direction of a magnetic field
having a magnitude B = 2.0. In the case of the FM in-
teraction, the cut-off temperature is highest when the in-
plane component of the magnetic field is largest and is par-
allel to the axis corresponding to the smaller component
of the XY coupling. In the case of the AFM Ising coupling
(cf. Fig. 11e), the behavior of the cut-off temperature is
identical to that for the FM coupling (cf. Fig. 11a). For the
anisotropic AFM coupling, the cut-off temperature has ad-
ditional local maxima when the magnetic field is directed
along the axis corresponding to the greater component of
the XY coupling (cf. Figs. 11f, 11g). For isotropic coupling
(cf. Fig. 11h), the cut-off temperature is greatest when the
magnetic field is directed along the z-axis.

8 Summary and conclusions

We have investigated the thermal entanglement of two
qubits coupled by an anisotropic Heisenberg XY inter-

action in the presence of an arbitrarily-directed external
magnetic field B = Bxex +Byey +Bzez. For a better as-
sessment of the influence of each component of the B-field,
we start from the simplest cases B = Bxex and B = Byey,
then progressively add one dimension to the B field by
considering B = Bxex +Byey, B = Bxex +Bzez, and fi-
nally consider the general case, B = Bxex+Byey+Bzez.
In general, the entanglement, as well as the cutoff tem-
perature above which it vanishes, are found to depend
strongly on the anisotropy of the exchange coupling and
on the magnetic field strength and orientation.

Specifically, analytical expressions of the concurrence
obtained for B = Bxex indicate that FM and AFM spin
couplings lead to different values of entanglement of the
two qubits, and that QPTs due to magnetic field-induced
level crossings occur for the AFM case, but never for the
FM case. In addition, we find that one can control and
produce entangled states of two spins at any temperature
and for any anisotropy of the spin coupling by adjust-
ing the magnitude of the B field. Similar conclusions are
drawn for the B = Byey case, whose analytic results can
be derived from those for B = Bxex by an appropriate
transformation. Since both FM- and AFM-coupled qubits
lead to the same entanglement for B = Bzez [21], it be-
comes clear that the asymmetry in the entanglement for
the FM and AFM cases is due to the existence of a nonzero
component of the B field in the plane of spin coupling.

For B fields having non-zero components along at least
two of the x-, y- or z-axes, different values of entanglement
are found for FM- and AFM-coupled qubits, provided that
the B field has a component in the (x, y)-plane. In this case
also, one can generate entangled states at any temperature
and anisotropy by increasing the field strength. In addi-
tion, QPTs always occur for the AFM chains, but only
occur in FM chains when it is of Ising type or when the
B field has a component along the z-axis (a consequence
of the occurrence of QPTs in both AFM and FM chains
for B = Bzez [21]). Our investigations also indicate that
higher entanglement is achieved for the XY coupling when
the in-plane component of the magnetic field is parallel to
the direction in which the exchange coupling between the
two spins is smaller.
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